Efflux kinetics and intracellular distribution of daunorubicin are not affected by major vault protein/lung resistance-related protein (vault) expression.

نویسندگان

  • Arend van Zon
  • Marieke H Mossink
  • Martijn Schoester
  • Rik J Scheper
  • Pieter Sonneveld
  • Erik A C Wiemer
چکیده

Vaults may contribute to multidrug resistance by transporting drugs away from their subcellular targets. To study the involvement of vaults in the extrusion of anthracyclines from the nucleus, we investigated the handling of daunorubicin by drug-sensitive and drug-resistant non-small lung cancer cells, including a green fluorescent protein (GFP)-tagged major vault protein (MVP)-overexpressing transfectant (SW1573/MVP-GFP). Cells were exposed to 1 microm daunorubicin for 60 min, after which the cells were allowed to efflux the accumulated drug. No significant differences in daunorubicin efflux kinetics were observed between the sensitive SW1573 and SW1573/MVP-GFP transfectant, whereas the drug-resistant SW1573/2R120 cells clearly demonstrated an increased efflux rate. It was noted that the redistribution of daunorubicin from the nucleus into distinct vesicular structures in the cytoplasm was not accompanied by changes in the intracellular localization of vaults. Similar experiments were performed using mouse embryonic fibroblasts derived from wild-type and MVP knockout mice, which were previously shown to be devoid of vault particles. Both cell lines showed comparable drug efflux rates, and the intracellular distribution of daunorubicin in time was identical. Reintroduction of a human MVP tagged with GFP in the MVP(-/-) cells results in the formation of vault particles but did not give rise an altered daunorubicin handling compared with MVP(-/-) cells expressing GFP. Our results indicate that vaults are not directly involved in the sequestration of anthracyclines in vesicles nor in their efflux from the nucleus.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lung resistance-related protein: determining its role in multidrug resistance.

Resistance to cytotoxic drugs remains a major obstacle for the successful treatment of cancer (1). Over the past two decades, a great deal of information has emerged that elucidates how cancer cells become drug resistant. At least one prominent drugresistance mechanism in cancer cells is the reduction of intracellular drug concentration at the putative drug target. There are at least two mechan...

متن کامل

Relationship between major vault protein/lung resistance protein, multidrug resistance-associated protein, P-glycoprotein expression, and drug resistance in childhood leukemia.

Cellular drug resistance is related to a poor prognosis in childhood leukemia, but little is known about the underlying mechanisms. We studied the expression of P-glycoprotein (P-gp), multidrug resistance (MDR)-associated protein (MRP), and major vault protein/lung resistance protein (LRP) in 141 children with acute lymphoblastic leukemia (ALL) and 27 with acute myeloid leukemia (AML) by flow c...

متن کامل

Regulation of major vault protein expression by upstream stimulating factor 1 in SW620 human colon cancer cells.

Major vault protein (MVP) is the main constituent of the vault ribonucleoprotein particle and is identical to lung resistance-related protein (LRP). Although MVP is also expressed in several types of normal tissues, little is known about its physiological role. In the present study, we identified the crucial MVP promoter elements that regulate MVP expression. An examination of tissue expression...

متن کامل

Increased susceptibility of vault poly(ADP-ribose) polymerase-deficient mice to carcinogen-induced tumorigenesis.

Vault poly(ADP-ribose) polymerase (VPARP) and telomerase-associated protein 1 (TEP1) are components of the vault ribonucleoprotein complex. Vaults have been implicated in multidrug resistance of human tumors and are thought to be involved in macromolecular assembly and/or transport. Previous studies showed that VPARP-deficient mice were viable, fertile, and did not display any vault-related or ...

متن کامل

The Mr 193,000 vault protein is up-regulated in multidrug-resistant cancer cell lines.

Vaults are 13 megadalton ribonucleoprotein particles composed largely of the major vault protein (MVP) and two high molecular weight proteins, p240 and p193, and a small vault RNA (vRNA). Increased levels of MVP expression, vault-associated vRNA, and vaults have been linked directly to multidrug resistance (MDR). To further define the putative role of vaults in MDR, we produced monoclonal antib...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer research

دوره 64 14  شماره 

صفحات  -

تاریخ انتشار 2004